\(\int \sin (c+d x) (a+b \sin (c+d x)) \tan ^5(c+d x) \, dx\) [1482]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 25, antiderivative size = 135 \[ \int \sin (c+d x) (a+b \sin (c+d x)) \tan ^5(c+d x) \, dx=\frac {15 a \text {arctanh}(\sin (c+d x))}{8 d}+\frac {b \cos ^2(c+d x)}{2 d}-\frac {3 b \log (\cos (c+d x))}{d}-\frac {3 b \sec ^2(c+d x)}{2 d}+\frac {b \sec ^4(c+d x)}{4 d}-\frac {15 a \sin (c+d x)}{8 d}-\frac {5 a \sin (c+d x) \tan ^2(c+d x)}{8 d}+\frac {a \sin (c+d x) \tan ^4(c+d x)}{4 d} \]

[Out]

15/8*a*arctanh(sin(d*x+c))/d+1/2*b*cos(d*x+c)^2/d-3*b*ln(cos(d*x+c))/d-3/2*b*sec(d*x+c)^2/d+1/4*b*sec(d*x+c)^4
/d-15/8*a*sin(d*x+c)/d-5/8*a*sin(d*x+c)*tan(d*x+c)^2/d+1/4*a*sin(d*x+c)*tan(d*x+c)^4/d

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {2913, 2672, 294, 327, 212, 2670, 272, 45} \[ \int \sin (c+d x) (a+b \sin (c+d x)) \tan ^5(c+d x) \, dx=\frac {15 a \text {arctanh}(\sin (c+d x))}{8 d}-\frac {15 a \sin (c+d x)}{8 d}+\frac {a \sin (c+d x) \tan ^4(c+d x)}{4 d}-\frac {5 a \sin (c+d x) \tan ^2(c+d x)}{8 d}+\frac {b \cos ^2(c+d x)}{2 d}+\frac {b \sec ^4(c+d x)}{4 d}-\frac {3 b \sec ^2(c+d x)}{2 d}-\frac {3 b \log (\cos (c+d x))}{d} \]

[In]

Int[Sin[c + d*x]*(a + b*Sin[c + d*x])*Tan[c + d*x]^5,x]

[Out]

(15*a*ArcTanh[Sin[c + d*x]])/(8*d) + (b*Cos[c + d*x]^2)/(2*d) - (3*b*Log[Cos[c + d*x]])/d - (3*b*Sec[c + d*x]^
2)/(2*d) + (b*Sec[c + d*x]^4)/(4*d) - (15*a*Sin[c + d*x])/(8*d) - (5*a*Sin[c + d*x]*Tan[c + d*x]^2)/(8*d) + (a
*Sin[c + d*x]*Tan[c + d*x]^4)/(4*d)

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 294

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^
n)^(p + 1)/(b*n*(p + 1))), x] - Dist[c^n*((m - n + 1)/(b*n*(p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 2670

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*tan[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> Dist[-f^(-1), Subst[Int[(1 - x^2
)^((m + n - 1)/2)/x^n, x], x, Cos[e + f*x]], x] /; FreeQ[{e, f}, x] && IntegersQ[m, n, (m + n - 1)/2]

Rule 2672

Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*tan[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> With[{ff = FreeFactors[S
in[e + f*x], x]}, Dist[ff/f, Subst[Int[(ff*x)^(m + n)/(a^2 - ff^2*x^2)^((n + 1)/2), x], x, a*(Sin[e + f*x]/ff)
], x]] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n + 1)/2]

Rule 2913

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]),
 x_Symbol] :> Dist[a, Int[Cos[e + f*x]^p*(d*Sin[e + f*x])^n, x], x] + Dist[b/d, Int[Cos[e + f*x]^p*(d*Sin[e +
f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n, p}, x] && IntegerQ[(p - 1)/2] && IntegerQ[n] && ((LtQ[p, 0]
&& NeQ[a^2 - b^2, 0]) || LtQ[0, n, p - 1] || LtQ[p + 1, -n, 2*p + 1])

Rubi steps \begin{align*} \text {integral}& = a \int \sin (c+d x) \tan ^5(c+d x) \, dx+b \int \sin ^2(c+d x) \tan ^5(c+d x) \, dx \\ & = \frac {a \text {Subst}\left (\int \frac {x^6}{\left (1-x^2\right )^3} \, dx,x,\sin (c+d x)\right )}{d}-\frac {b \text {Subst}\left (\int \frac {\left (1-x^2\right )^3}{x^5} \, dx,x,\cos (c+d x)\right )}{d} \\ & = \frac {a \sin (c+d x) \tan ^4(c+d x)}{4 d}-\frac {(5 a) \text {Subst}\left (\int \frac {x^4}{\left (1-x^2\right )^2} \, dx,x,\sin (c+d x)\right )}{4 d}-\frac {b \text {Subst}\left (\int \frac {(1-x)^3}{x^3} \, dx,x,\cos ^2(c+d x)\right )}{2 d} \\ & = -\frac {5 a \sin (c+d x) \tan ^2(c+d x)}{8 d}+\frac {a \sin (c+d x) \tan ^4(c+d x)}{4 d}+\frac {(15 a) \text {Subst}\left (\int \frac {x^2}{1-x^2} \, dx,x,\sin (c+d x)\right )}{8 d}-\frac {b \text {Subst}\left (\int \left (-1+\frac {1}{x^3}-\frac {3}{x^2}+\frac {3}{x}\right ) \, dx,x,\cos ^2(c+d x)\right )}{2 d} \\ & = \frac {b \cos ^2(c+d x)}{2 d}-\frac {3 b \log (\cos (c+d x))}{d}-\frac {3 b \sec ^2(c+d x)}{2 d}+\frac {b \sec ^4(c+d x)}{4 d}-\frac {15 a \sin (c+d x)}{8 d}-\frac {5 a \sin (c+d x) \tan ^2(c+d x)}{8 d}+\frac {a \sin (c+d x) \tan ^4(c+d x)}{4 d}+\frac {(15 a) \text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\sin (c+d x)\right )}{8 d} \\ & = \frac {15 a \text {arctanh}(\sin (c+d x))}{8 d}+\frac {b \cos ^2(c+d x)}{2 d}-\frac {3 b \log (\cos (c+d x))}{d}-\frac {3 b \sec ^2(c+d x)}{2 d}+\frac {b \sec ^4(c+d x)}{4 d}-\frac {15 a \sin (c+d x)}{8 d}-\frac {5 a \sin (c+d x) \tan ^2(c+d x)}{8 d}+\frac {a \sin (c+d x) \tan ^4(c+d x)}{4 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.27 (sec) , antiderivative size = 146, normalized size of antiderivative = 1.08 \[ \int \sin (c+d x) (a+b \sin (c+d x)) \tan ^5(c+d x) \, dx=\frac {15 a \text {arctanh}(\sin (c+d x))}{8 d}-\frac {b \left (12 \log (\cos (c+d x))+6 \sec ^2(c+d x)-\sec ^4(c+d x)+2 \sin ^2(c+d x)\right )}{4 d}+\frac {15 a \sec (c+d x) \tan (c+d x)}{8 d}-\frac {15 a \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {5 a \sec (c+d x) \tan ^3(c+d x)}{d}-\frac {a \sin (c+d x) \tan ^4(c+d x)}{d} \]

[In]

Integrate[Sin[c + d*x]*(a + b*Sin[c + d*x])*Tan[c + d*x]^5,x]

[Out]

(15*a*ArcTanh[Sin[c + d*x]])/(8*d) - (b*(12*Log[Cos[c + d*x]] + 6*Sec[c + d*x]^2 - Sec[c + d*x]^4 + 2*Sin[c +
d*x]^2))/(4*d) + (15*a*Sec[c + d*x]*Tan[c + d*x])/(8*d) - (15*a*Sec[c + d*x]^3*Tan[c + d*x])/(4*d) + (5*a*Sec[
c + d*x]*Tan[c + d*x]^3)/d - (a*Sin[c + d*x]*Tan[c + d*x]^4)/d

Maple [A] (verified)

Time = 0.83 (sec) , antiderivative size = 167, normalized size of antiderivative = 1.24

method result size
derivativedivides \(\frac {a \left (\frac {\sin ^{7}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}-\frac {3 \left (\sin ^{7}\left (d x +c \right )\right )}{8 \cos \left (d x +c \right )^{2}}-\frac {3 \left (\sin ^{5}\left (d x +c \right )\right )}{8}-\frac {5 \left (\sin ^{3}\left (d x +c \right )\right )}{8}-\frac {15 \sin \left (d x +c \right )}{8}+\frac {15 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+b \left (\frac {\sin ^{8}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}-\frac {\sin ^{8}\left (d x +c \right )}{2 \cos \left (d x +c \right )^{2}}-\frac {\left (\sin ^{6}\left (d x +c \right )\right )}{2}-\frac {3 \left (\sin ^{4}\left (d x +c \right )\right )}{4}-\frac {3 \left (\sin ^{2}\left (d x +c \right )\right )}{2}-3 \ln \left (\cos \left (d x +c \right )\right )\right )}{d}\) \(167\)
default \(\frac {a \left (\frac {\sin ^{7}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}-\frac {3 \left (\sin ^{7}\left (d x +c \right )\right )}{8 \cos \left (d x +c \right )^{2}}-\frac {3 \left (\sin ^{5}\left (d x +c \right )\right )}{8}-\frac {5 \left (\sin ^{3}\left (d x +c \right )\right )}{8}-\frac {15 \sin \left (d x +c \right )}{8}+\frac {15 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )+b \left (\frac {\sin ^{8}\left (d x +c \right )}{4 \cos \left (d x +c \right )^{4}}-\frac {\sin ^{8}\left (d x +c \right )}{2 \cos \left (d x +c \right )^{2}}-\frac {\left (\sin ^{6}\left (d x +c \right )\right )}{2}-\frac {3 \left (\sin ^{4}\left (d x +c \right )\right )}{4}-\frac {3 \left (\sin ^{2}\left (d x +c \right )\right )}{2}-3 \ln \left (\cos \left (d x +c \right )\right )\right )}{d}\) \(167\)
parallelrisch \(\frac {96 b \left (\frac {3}{4}+\frac {\cos \left (4 d x +4 c \right )}{4}+\cos \left (2 d x +2 c \right )\right ) \ln \left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-60 \left (a +\frac {8 b}{5}\right ) \left (\frac {3}{4}+\frac {\cos \left (4 d x +4 c \right )}{4}+\cos \left (2 d x +2 c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+60 \left (a -\frac {8 b}{5}\right ) \left (\frac {3}{4}+\frac {\cos \left (4 d x +4 c \right )}{4}+\cos \left (2 d x +2 c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )-30 a \sin \left (3 d x +3 c \right )-4 a \sin \left (5 d x +5 c \right )-10 a \sin \left (d x +c \right )-9 b \cos \left (2 d x +2 c \right )+12 \cos \left (4 d x +4 c \right ) b +b \cos \left (6 d x +6 c \right )-4 b}{8 d \left (\cos \left (4 d x +4 c \right )+4 \cos \left (2 d x +2 c \right )+3\right )}\) \(221\)
risch \(3 i x b +\frac {b \,{\mathrm e}^{2 i \left (d x +c \right )}}{8 d}+\frac {i a \,{\mathrm e}^{i \left (d x +c \right )}}{2 d}-\frac {i a \,{\mathrm e}^{-i \left (d x +c \right )}}{2 d}+\frac {b \,{\mathrm e}^{-2 i \left (d x +c \right )}}{8 d}+\frac {6 i b c}{d}+\frac {i \left (9 a \,{\mathrm e}^{7 i \left (d x +c \right )}+a \,{\mathrm e}^{5 i \left (d x +c \right )}+24 i b \,{\mathrm e}^{6 i \left (d x +c \right )}-a \,{\mathrm e}^{3 i \left (d x +c \right )}+32 i b \,{\mathrm e}^{4 i \left (d x +c \right )}-9 a \,{\mathrm e}^{i \left (d x +c \right )}+24 i b \,{\mathrm e}^{2 i \left (d x +c \right )}\right )}{4 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{4}}-\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) b}{d}-\frac {15 a \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{8 d}+\frac {15 a \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{8 d}-\frac {3 \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) b}{d}\) \(259\)
norman \(\frac {\frac {12 b}{d}+\frac {12 b \left (\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {15 a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d}+\frac {25 a \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}+\frac {11 a \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d}+\frac {11 a \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d}+\frac {25 a \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}-\frac {15 a \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}+\frac {52 b \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {30 b \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {30 b \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{4}}+\frac {3 b \ln \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {3 \left (5 a -8 b \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{8 d}-\frac {3 \left (8 b +5 a \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{8 d}\) \(276\)

[In]

int(sec(d*x+c)^5*sin(d*x+c)^6*(a+b*sin(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

1/d*(a*(1/4*sin(d*x+c)^7/cos(d*x+c)^4-3/8*sin(d*x+c)^7/cos(d*x+c)^2-3/8*sin(d*x+c)^5-5/8*sin(d*x+c)^3-15/8*sin
(d*x+c)+15/8*ln(sec(d*x+c)+tan(d*x+c)))+b*(1/4*sin(d*x+c)^8/cos(d*x+c)^4-1/2*sin(d*x+c)^8/cos(d*x+c)^2-1/2*sin
(d*x+c)^6-3/4*sin(d*x+c)^4-3/2*sin(d*x+c)^2-3*ln(cos(d*x+c))))

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.02 \[ \int \sin (c+d x) (a+b \sin (c+d x)) \tan ^5(c+d x) \, dx=\frac {8 \, b \cos \left (d x + c\right )^{6} + 3 \, {\left (5 \, a - 8 \, b\right )} \cos \left (d x + c\right )^{4} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, {\left (5 \, a + 8 \, b\right )} \cos \left (d x + c\right )^{4} \log \left (-\sin \left (d x + c\right ) + 1\right ) - 4 \, b \cos \left (d x + c\right )^{4} - 24 \, b \cos \left (d x + c\right )^{2} - 2 \, {\left (8 \, a \cos \left (d x + c\right )^{4} + 9 \, a \cos \left (d x + c\right )^{2} - 2 \, a\right )} \sin \left (d x + c\right ) + 4 \, b}{16 \, d \cos \left (d x + c\right )^{4}} \]

[In]

integrate(sec(d*x+c)^5*sin(d*x+c)^6*(a+b*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/16*(8*b*cos(d*x + c)^6 + 3*(5*a - 8*b)*cos(d*x + c)^4*log(sin(d*x + c) + 1) - 3*(5*a + 8*b)*cos(d*x + c)^4*l
og(-sin(d*x + c) + 1) - 4*b*cos(d*x + c)^4 - 24*b*cos(d*x + c)^2 - 2*(8*a*cos(d*x + c)^4 + 9*a*cos(d*x + c)^2
- 2*a)*sin(d*x + c) + 4*b)/(d*cos(d*x + c)^4)

Sympy [F(-1)]

Timed out. \[ \int \sin (c+d x) (a+b \sin (c+d x)) \tan ^5(c+d x) \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)**5*sin(d*x+c)**6*(a+b*sin(d*x+c)),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.20 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.90 \[ \int \sin (c+d x) (a+b \sin (c+d x)) \tan ^5(c+d x) \, dx=-\frac {8 \, b \sin \left (d x + c\right )^{2} - 3 \, {\left (5 \, a - 8 \, b\right )} \log \left (\sin \left (d x + c\right ) + 1\right ) + 3 \, {\left (5 \, a + 8 \, b\right )} \log \left (\sin \left (d x + c\right ) - 1\right ) + 16 \, a \sin \left (d x + c\right ) - \frac {2 \, {\left (9 \, a \sin \left (d x + c\right )^{3} + 12 \, b \sin \left (d x + c\right )^{2} - 7 \, a \sin \left (d x + c\right ) - 10 \, b\right )}}{\sin \left (d x + c\right )^{4} - 2 \, \sin \left (d x + c\right )^{2} + 1}}{16 \, d} \]

[In]

integrate(sec(d*x+c)^5*sin(d*x+c)^6*(a+b*sin(d*x+c)),x, algorithm="maxima")

[Out]

-1/16*(8*b*sin(d*x + c)^2 - 3*(5*a - 8*b)*log(sin(d*x + c) + 1) + 3*(5*a + 8*b)*log(sin(d*x + c) - 1) + 16*a*s
in(d*x + c) - 2*(9*a*sin(d*x + c)^3 + 12*b*sin(d*x + c)^2 - 7*a*sin(d*x + c) - 10*b)/(sin(d*x + c)^4 - 2*sin(d
*x + c)^2 + 1))/d

Giac [A] (verification not implemented)

none

Time = 0.36 (sec) , antiderivative size = 124, normalized size of antiderivative = 0.92 \[ \int \sin (c+d x) (a+b \sin (c+d x)) \tan ^5(c+d x) \, dx=-\frac {8 \, b \sin \left (d x + c\right )^{2} - 3 \, {\left (5 \, a - 8 \, b\right )} \log \left ({\left | \sin \left (d x + c\right ) + 1 \right |}\right ) + 3 \, {\left (5 \, a + 8 \, b\right )} \log \left ({\left | \sin \left (d x + c\right ) - 1 \right |}\right ) + 16 \, a \sin \left (d x + c\right ) - \frac {2 \, {\left (18 \, b \sin \left (d x + c\right )^{4} + 9 \, a \sin \left (d x + c\right )^{3} - 24 \, b \sin \left (d x + c\right )^{2} - 7 \, a \sin \left (d x + c\right ) + 8 \, b\right )}}{{\left (\sin \left (d x + c\right )^{2} - 1\right )}^{2}}}{16 \, d} \]

[In]

integrate(sec(d*x+c)^5*sin(d*x+c)^6*(a+b*sin(d*x+c)),x, algorithm="giac")

[Out]

-1/16*(8*b*sin(d*x + c)^2 - 3*(5*a - 8*b)*log(abs(sin(d*x + c) + 1)) + 3*(5*a + 8*b)*log(abs(sin(d*x + c) - 1)
) + 16*a*sin(d*x + c) - 2*(18*b*sin(d*x + c)^4 + 9*a*sin(d*x + c)^3 - 24*b*sin(d*x + c)^2 - 7*a*sin(d*x + c) +
 8*b)/(sin(d*x + c)^2 - 1)^2)/d

Mupad [B] (verification not implemented)

Time = 12.35 (sec) , antiderivative size = 304, normalized size of antiderivative = 2.25 \[ \int \sin (c+d x) (a+b \sin (c+d x)) \tan ^5(c+d x) \, dx=\frac {3\,b\,\ln \left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}{d}-\frac {\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-1\right )\,\left (\frac {15\,a}{8}+3\,b\right )}{d}+\frac {\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+1\right )\,\left (\frac {15\,a}{8}-3\,b\right )}{d}-\frac {-\frac {15\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}}{4}-6\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}+\frac {25\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9}{4}+12\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8+\frac {11\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7}{2}+4\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+\frac {11\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{2}+12\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+\frac {25\,a\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{4}-6\,b\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-\frac {15\,a\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{4}}{d\,\left (-{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{12}+2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-1\right )} \]

[In]

int((sin(c + d*x)^6*(a + b*sin(c + d*x)))/cos(c + d*x)^5,x)

[Out]

(3*b*log(tan(c/2 + (d*x)/2)^2 + 1))/d - (log(tan(c/2 + (d*x)/2) - 1)*((15*a)/8 + 3*b))/d + (log(tan(c/2 + (d*x
)/2) + 1)*((15*a)/8 - 3*b))/d - ((25*a*tan(c/2 + (d*x)/2)^3)/4 - (15*a*tan(c/2 + (d*x)/2))/4 + (11*a*tan(c/2 +
 (d*x)/2)^5)/2 + (11*a*tan(c/2 + (d*x)/2)^7)/2 + (25*a*tan(c/2 + (d*x)/2)^9)/4 - (15*a*tan(c/2 + (d*x)/2)^11)/
4 - 6*b*tan(c/2 + (d*x)/2)^2 + 12*b*tan(c/2 + (d*x)/2)^4 + 4*b*tan(c/2 + (d*x)/2)^6 + 12*b*tan(c/2 + (d*x)/2)^
8 - 6*b*tan(c/2 + (d*x)/2)^10)/(d*(2*tan(c/2 + (d*x)/2)^2 + tan(c/2 + (d*x)/2)^4 - 4*tan(c/2 + (d*x)/2)^6 + ta
n(c/2 + (d*x)/2)^8 + 2*tan(c/2 + (d*x)/2)^10 - tan(c/2 + (d*x)/2)^12 - 1))